Schneidstoffe

Cutting Materials

VHM

= Vollhartmetall

Vollhartmetalle sind Sinterwerkstoffe und bestehen meistens aus 88 - 94 % Wolframcarbid (WC) und 6 - 12 % Cobalt (als Binder) und ggf. anderen Karbiden wie TiC oder TaC. Kennzeichnend sind hohe Härte, Verschleißfestigkeit und Warmfestigkeit. Je nach Anwendung finden verschiedene Hartmetallsorten Anwendung. Die verwendeten Sorten fallen dabei in den Bereich K10 - K44 UF. Hartmetalle sind weniger zäh als Schnellarbeitsstähle (HSS), erlauben aber höhere Schnitttemperaturen und somit höhere Schnittgeschwindigkeiten. Hartmetalle haben eine Härte 1400 - 2400 HV und eine mittlere Biegefestigkeit von 900 - 2000 N/mm². Hierdurch sind sie aber auch deutlich spröder, also empfindlich gegen Schocks und gegen plötzliche Temperaturwechsel.

HSS

= High Speed Steel (Schnellarbeitsstahl)

Die gängigste Variante ist S-6-5-2 (DIN 1.3343). HSS zeichnet sich durch eine breite Verfügbarkeit und Vielseitigkeit in den Anwendungen aus. Im Vergleich zu Hartmetall weist HSS eine geringere Härte (62 - 64 HRC), aber dafür eine höhere Biegebruchfestigkeit auf. Die Schnittgeschwindigkeiten sind, verglichen mit VHM, deutlich geringer. HSS eignet sich i.d.R. zur Bearbeitung von Werkstoffen mit Zugfestigkeiten bis 900 N/mm².

HSS

= High Speed Steel(Schnellarbeitsstahl)

Schnellarbeitsstahl mit einem Kobaltgehalt von mind. 4,5 % oder Vanadium von mindestens 2,6 %. HSS-E erlaubt höhere Bearbeitungstemperaturen als HSS, erhöhte Schnittgeschwindigkeiten sind möglich. Die Härte von HSS-E liegt zwischen 64 HRC und 66 HRC. Mit HSS-E ist die Bearbeitung von zäheren oder spröden Werkstoffen möglich.

HSS E05 = High Speed Steel (Schnellarbeitsstahl)

Schnellarbeitsstahl mit einem Kobaltgehalt von mind. 4,5 % (S-6-5-2-5 DIN 1.3243). Hierdurch kann in höheren Temperaturbereichen gearbeitet werden, was erhöhte Schnittgeschwindigkeiten zu HSS erlaubt. Die Härte von HSS-E05 liegt zwischen 64 HRC und 66 HRC.

HSS E08 = High Speed Steel (Schnellarbeitsstahl)

Schnellarbeitsstahl mit einem Kobaltgehalt von ca. 8% (S-2-9-1-8 DIN 1.3247). HSS-E08 ist die Schnellarbeitsstahlvariante mit der höchsten Warmfestigkeit. Es findet daher bevorzugt bei der Bearbeitung von Werkstoffen mit schlechter Wärmeleitung Anwendung. Die Härte von HSS-E08 liegt zwischen 65 HRC und 67 HRC.

РМ

Pulvermetall

Hier handelt es sich um gesinterte Schnellstähle. Sie vereinen die Vorteile von HSS und VHM. Erhöhte Bruchsicherheit und Ermüdungsfestigkeit durch gleichmäßig verteilte Karbide, keine metallurgischen Defekte. Karbidvolumen und Härte steigern die Widerstandsfähigkeit gegen abrasiven und adhäsiven Verschleiß. PM hat ein deutlich verbessertes Verschleißverhalten im Vergleich mit HSS. Verwendet werden verschiedene PM-Sorten mit unterschiedlichen Vanadium- und Kobalt-Anteilen. Die Härte von PM liegt zwischen 64 HRC und 67 HRC.

HM-Platte = mit Hartmetall bestückt

Hierbei werden eine oder mehrere Schneidplatten aus Hartmetall auf einen Grundkörper aus Schnellstahl gelötet. Dies kombiniert Biegebruchfestigket von HSS mit Verschleißfestigkeit von VHM. Verwendet wird ein Hochtemperaturlot, das bis 800 °C stabil bleibt.

Wichtigste Herstellungstoleranzen nach DIN 7160/7161

Main manufacturing tolerances

Werte in µm - 0,001 mm

Passung	Nennmaße (Innenmaße) Ø in mm					
von	1,0	3,1	6,1	10,1	18,1	30,1
bis	3,0	6,0	10,0	18,0	30,0	50,0
d 9	- 20	- 30	- 40	- 50	- 65	- 80
	- 45	- 60	- 76	- 93	- 117	- 142
d 11	- 20	- 30	- 40	- 50	- 65	- 80
	- 80	- 105	- 130	- 160	- 195	- 240
e 8	- 20	- 20	- 25	- 32	- 40	- 50
	- 28	- 38	- 140	- 59	- 73	- 89
f 8	- 6	- 10	- 13	- 16	- 20	- 25
	- 20	- 28	- 35	- 43	- 53	- 64
f 9	- 60	- 10	- 13	- 19	- 20	- 25
	- 31	- 28	- 49	- 59	- 72	- 87
h 6	0	0	0	0	0	0
	- 6	- 8	- 9	- 11	- 13	- 16
h 7	0	0	0	0	0	0
	- 10	- 12	- 15	- 18	- 21	- 25
h 8	0	0	0	0	0	0
	- 14	- 18	- 22	- 27	- 33	- 39
h 9	0	0	0	0	0	0
	- 25	- 30	- 36	- 43	- 52	- 62
h 10	0	0	0	0	0	0
	- 40	- 48	- 58	- 70	- 84	- 100

Passung	Nennmaße (Innenmaße) Ø in mm				mm	
von	1,0	3,1	6,1	10,1	18,1	30,1
bis	3,0	6,0	10,0	18,0	30,0	50,0
h 11	0	0	0	0	0	0
	- 60	- 75	- 90	- 110	- 130	- 160
h 12	0	0	0	0	0	0
	- 100	- 120	- 150	- 180	- 210	- 200
js 11	+ 30	+ 38	+ 45	+ 55	+ 65	+ 80
	- 30	- 38	- 45	- 55	- 65	- 80
js 12	+ 50	+ 60	+ 75	+ 90	+ 105	+ 125
	- 50	- 60	- 75	- 90	- 105	- 125
js 14	+ 125	+ 150	+ 180	+ 215	+ 260	+ 310
	- 125	- 150	- 180	- 215	- 260	- 310
js 16	+ 300	+ 375	+ 450	+ 550	+ 650	+ 800
	- 300	- 375	- 450	- 550	- 650	- 800
k 10	+ 40	+ 48	+ 58	+ 70	+ 84	+ 100
	0	0	0	0	0	0
k 11	+ 60	+ 75	+ 90	+ 110	+ 130	+ 160
	0	0	0	0	0	0
k 12	+ 90	+ 120	+ 150	+ 180	+ 210	+ 250
	0	0	0	0	0	0
k 16	+600	+ 750	+ 900	+ 1100	+ 1300	+ 1600
	0	0	0	0	0	0

Beschichtungen und Behandlungen

Coatings and Surface Treatments

Unbeschichtet.

poliert polished

Unbeschichtet mit polierten Spannuten und Schneiden für extrem scharfe Schneidkanten und beste Spanabfuhr.

Die Oberfläche des Werkzeuges ist vaporisiert (dampfangelassen). Zur Verminderung von Kaltaufschweißungen und Aufbauschneiden. Gute Haftung von Kühl- und Schmierstoffen.

A.Cut

Schichttyp Farbe

TiN-Basis (Titan-Nitrid)

gelb/gold Schichtdicke 2 - 4 µm Härte 2.300 HV

Universell einsetzbare Beschichtung mit guter chemischer und thermischer Stabilität. Führt zur allgemeinen Verbesserung der Werkzeugleistung.

Alu.Cut

Schichttyp Farbe

TiB² (Titan-Borid)

silber Schichtdicke 2 µm Härte 4.000 HV

Hochleistungsschicht für Aluminium und Aluminium-Legierungen. Extrem glatte Oberfläche und hohe Härte. Vermeidung von Aluminium-Aufschweißungen

C.Cut

Schichttyp Schichtfarbe TiCN (Titan-Carbon-Nitrid)

Schichtdicke 3.000 HV Härte

Universell einsetzbare Beschichtung mit hoher Zähigkeit und geringem Reibwert. Verwendung hauptsächlich beim Gewindebohren und -formen. Allgemeine Verbesserung der Werkzeugleistung.

C.Cut

Schichttyp Schichtfarbe

TiCN-Basis (Titan-Carbon-Nitrid)

Schichtdicke Härte

3 µm 3.200 HV

TiCN-Beschichtung mit besonders glatter Oberflächen. Sehr niedriger Reibwert beugt Kaltaufschweißungen vor. Verwendung hauptsächlich beim Gewindebohren und Gewindeformen in Inox.

X.Cut

Schichttyp TiAIN (Titan-Aluminium-Nitrid) blau/anthrazit

Schichtfarbe Schichtdicke 3.300 HV

Optimierte Hochleistungsbeschichtung. Sehr gute Oxidationsbeständigkeit. Geignet für hohe thermische Schneidstoffbelastung. Ermöglicht eine Erhöhung de Schnittwerte.

X₂.Cut

Schichttyp AlCrN-Basis (Aluminium-Chrom-Nitrid) Schichtfarbe

Schichtdicke

Härte

3.000 HV

Speziell für die Bohrbearbeitung optimierte Schicht. Mit erhöhter Abrasionsbeständigkeit und verbesserter Schichthaftung sowie geringer Adhäsionsneigung durch eine besonders glatte Oberfläche.

X₅.Cut

Schichttyp Schichtfarbe

TiAIN-Basis (Titan-Aluminium-Nitrid) kupfer

Schichtdicke 3 µm 3.500 HV Härte

Optimierte Hochleistungsbeschichtung für Bohr- und Senkwerkzeuge aus HSS. Einsatz bei harten und abrasiven Legierungen. Deutliche Verbesserung der Werkzeugleistung.

X₆.Cut

Schichttyp TiAICN (Titan-Aluminium-Carbon-Nitrid) Schichtfarbe kupfer

Schichtdicke 3 µm Härte 3.800 HV

Schicht mit nanostrukturiertemkristallinem Aufhau. Sehr hohe thermische Beständigkeit, verbunden mit besonders glatter Schichtoberfläche. Sehr gute Oberflächen am Werkstück.

Z.Cut

Schichttyp ZrN (Zirkon-Chrom-Nitrid)

Schichtfarbe gold Schichtdicke 3 µm

Härte 2.600 HV

Mehrlagige Schicht mit extrem niedrigem Reibwert. Einsatz bei der Bearbeitung von NE-Metallen wie Aluminium, Magnesium und teilweise auch Kunststoffen.

Diamant

Schichttyp Schichtfarbe Schichtdicke

Härte

Kristalline Diamantschicht

4 - 10 um 10.000 HV

Kristalline Diamantschicht mit höchster Abrasionsbeständigkeit. Kristalliner Aufbau mit Vorbehandlung für Grafit. Speziell für die Fräsbearbeitung von Grafiten.

Dia.F

Schichttyp Schichtfarbe Glatte Mehrlagen-Diamantschicht

Schichtdicke 4 - 10 um 10.000 HV Härte

Glatte Mehrlagen-Diamantschicht mit spezieller Vorbehandlung für stark erhöhte Schichthaftung. Bearbeitung von hochabrasiven Materialien mit Klebe neigung oder wechselnden Werkstoffeigenschaften: Carbon, CFK-Ti, CFK-Al-Composites, und Keramiken

Dia.HC

Schichttyp Schichtfarbe

Diamantnahe Schicht schwarz

Schichtdicke 2 - 3 iim 5.000 HV Härte

Diamantnahe Schicht mit hoher Verschleißfestigkeit und extrem geringem Reibungswert. Geringe Schichtdicke führt zu deutlich geringerer Kantenverrundung am Werkzeug. Speziell für die Bearbeitung von

Faserkunststoffen.

Werkstoffe und Werkstoffgruppen

Materials and Material Groups

ST500

Unlegierte und niedriglegierte Stähle mit Zugfestigkeiten bis 800 Mpa Unalloyed or low alloyed steels with a resistance under 800 Mpa

Werkstoff	DIN	Härte
Allgemeine Bar	ustähle	
St 37-2 (S235JR)	1.0037	< 400 N/mm²
St 44-2 (S275JR)	1.0044	< 700 N/mm²
St 50-2 (E295)	1.0050	< 700 N/mm²
St 60-2 (E335)	1.0060	< 700 N/mm²
St 70-2 (E360)	1.0070	< 700 N/mm²
St 37	1.0120	< 700 N/mm²
St 42	1.0140	< 700 N/mm²
St 44-2	1.0181	< 700 N/mm²
St 50-2	1.0531	< 700 N/mm²
Kesselbleche		
P235GH	1.0345	< 800 N/mm²
P235GH/H III	1.0435	< 800 N/mm²
P235GH/H IV	1.0445	< 800 N/mm ²
Stahlguss		
GS-38	1.0416	< 800 N/mm²
GS-52 (GE260)	1.0552	< 800 N/mm²
GS-60 (GE300)	1.0558	< 800 N/mm²

Werkstoff	DIN	Härte
Feinkornbausta	ahl	
StE 255 (S255N)	1.0461	< 800 N/mm ²
StE 355 (P355N)	1.0562	< 800 N/mm ²
StE 460 (P460N)	1.8905	< 800 N/mm ²
StE 500 (S500N)	1.8907	< 800 N/mm ²
Einsatzstähle		
Ck 15 (C15E)	1.1141	< 400 N/mm ²
13 Cr 2 (EC 30)	1.7012	< 700 N/mm ²
13 Cr 3 (EC 60)	1.7015	< 700 N/mm²
C 10	1.0301	< 700 N/mm ²
C 15	1.0401	< 700 N/mm ²
Ck 10 (C10E)	1.1121	< 700 N/mm ²
Cm 15 (C15R)	1.1140	< 700 N/mm ²
Vergütungsstä	hle	
C 22	1.0402	< 400 N/mm ²
C 35	1.0501	< 850 N/mm ²
C 45	1.0503	< 850 N/mm ²
C 30	1.0528	< 850 N/mm ²

Werkstoff	DIN	Härte
Vergütungsstäl	nle	
Ck 22 (C22E)	1.1151	< 850 N/mm²
Ck 30 (C30E)	1.1178	< 850 N/mm ²
Cm 35 (C35R)	1.1180	< 850 N/mm ²
Ck 35 (C35E)	1.1181	< 700 N/mm²
Ck 45 (C45E)	1.1191	< 700 N/mm²
Automatenstäh	ile	
15 S 10 (15 S 20)	1.0710	< 800 N/mm²
10 S 20	1.0721	< 800 N/mm ²
10 SPb 20	1.0722	< 400 N/mm²
15 S 22 (15 S 20)	1.0723	< 800 N/mm²
35 S 20	1.0726	< 700 N/mm²
45 S 20 (46 S 20)	1.0727	< 800 N/mm²
Kaltfließpresss	tähle	
Cq 15 (C15C)	1.1132	< 800 N/mm²
Cq 22 (C22C)	1.1152	< 800 N/mm²
Cq 35 (C35C)	1.1172	< 800 N/mm ²
Cq 45 (C45C)	1.1192	< 800 N/mm ²

ST1000

Vergütete, legierte Stähle und Kohlenstoffstähle mit Zugfestigkeiten bis 1300 Mpa

Tempered, alloyed steels and carbon steels with resistance up to 1300

Werkstoff	DIN	Härte
Kaltzähe Baustä	ihle	
20 Mn 6	1.1169	< 850 N/mm ²
14 Ni 6	1.5622	< 850 N/mm²
24 Ni 8	1.5633	< 850 N/mm²
26 CrMo 4	1.7219	< 850 N/mm²
Warmfeste Baus	stähle	
21 MoV 5 3	1.5404	< 850 N/mm²
17 MoV 8 4	1.5406	< 850 N/mm²
16 CrMo 4 4	1.7337	< 850 N/mm²
21 CrMoV 5 11	1.8070	< 850 N/mm²
Nitrierstähle		
34 CrAl 6	1.8504	< 850 N/mm²
34 CrAIS 5	1.8506	< 850 N/mm²
31 CrMo 12	1.8515	< 850 N/mm²
31 CrMoV 9	1.8519	< 850 N/mm²
34 CrAlNi 7	1.8550	< 850 N/mm²
Vergütungsstäh	le	
40 Mn 4	1.1157	< 850 N/mm ²
28 Mn 6	1.1170	< 850 N/mm ²
34 CrMo 4	1.7220	< 850 N/mm²
42 CrMo 4	1.7225	< 850 N/mm²
50 CrMo 4	1.7228	< 850 N/mm²
Stahlguss		
GS-15 CrNi 6	1.5919	< 850 N/mm ²
GS-25 CrMo 4	1.7218	< 850 N/mm ²
GS-34 CrMo 4	1.7220	< 850 N/mm ²
GS-18 CrMo 9 10	1.7379	< 850 N/mm²
Legierte, vergüt	tete Stäl	hle
40 Mn 4 V	1.1157	< 1.200 N/mm²
28 Mn 4 V	1.1170	< 1.200 N/mm²
25CrMo 4 V	1.7218	< 1.200 N/mm²
34 CrMo 4 V	1.7220	< 1.200 N/mm²
42 CrMo 4 V	1.7225	< 1.200 N/mm ²

on secens with				
Werkstoff	DIN	Härte		
Legierte, vergütete Stähle				
50 CrMo 4 V	1.7228	< 850 N/mm²		
Einsatzstähle				
20 MnCr 5	1.7147	< 1.200 N/mm ²		
20 MoCr 4	1.7321	< 1.200 N/mm ²		
25 MoCr 4	1.7325	< 1.200 N/mm ²		
15 CrNi 6	1.5919	< 1.200 N/mm ²		
Nietrierstähle				
34 CrAl 6	1.8504	< 1.200 N/mm²		
34 CrAlMo 5	1.8507	< 850 N/mm²		
41 CrAlMo 7	1.8509	< 1.200 N/mm²		
31 CrMo 12	1.8515	< 1.200 N/mm ²		
31 CrAlNi 7	1.8550	< 1.200 N/mm ²		
Wälzlagerstähl	е			
100 Cr 2 (W1)	1.3501	< 1.200 N/mm²		
105 Cr 4 (W2)	1.3503	< 1.200 N/mm ²		
100 Cr 6 (W3)	1.3505	< 1.200 N/mm²		
X 102 CrMo 17	1.3543	< 1.200 N/mm²		
Federstähle				
38 Si 6	1.5022	< 1.200 N/mm ²		
46 Si 7	1.5024	< 1.200 N/mm²		
51 Si 7	1.5025	< 1.200 N/mm²		
60 SiMn 5	1.5142	< 1.200 N/mm²		
67 SiCr 5	1.7103	< 1.200 N/mm ²		
51 CrMoV 4	1.7701	< 1.200 N/mm ²		
Feinkornbaustä	hle			
StE 690 V	1.8928	< 1.200 N/mm²		
Ste 960 V		< 1.200 N/mm ²		
Verschleißfeste	Stähle			
HARDOX 400		< 1.400 N/mm²		
Unlegierte Wer	kzeugstä	ihle		
C 70 U / 70 W1	1.1520	< 1.300 N/mm²		
C 45 U / C 45 W	1.1730	< 1.300 N/mm ²		

3 I CIAINI /	1.8550	< 1.200 N/mm²		
Wälzlagerstähle	2			
100 Cr 2 (W1)		< 1.200 N/mm²		
105 Cr 4 (W2)	1.3503	< 1.200 N/mm²		
100 Cr 6 (W3)	1.3505	< 1.200 N/mm²		
X 102 CrMo 17	1.3543	< 1.200 N/mm ²		
Federstähle				
38 Si 6	1.5022	< 1.200 N/mm ²		
46 Si 7	1.5024	< 1.200 N/mm²		
51 Si 7	1.5025	< 1.200 N/mm²		
60 SiMn 5	1.5142	< 1.200 N/mm²		
67 SiCr 5	1.7103	< 1.200 N/mm²		
51 CrMoV 4	1.7701	< 1.200 N/mm ²		
Feinkornbaustä	hle			
StE 690 V	1.8928	< 1.200 N/mm ²		
Ste 960 V		< 1.200 N/mm²		
Verschleißfeste Stähle				
HARDOX 400		< 1.400 N/mm ²		
Unlegierte Werl	kzeugstä	ihle		
C 70 U / 70 W1	1.1520	< 1.300 N/mm ²		
C 45 U / C 45 W	1.1730	< 1.300 N/mm ²		

0 Мра		
Werkstoff	DIN	Härte
Unlegierte Werkz		
C 60 U / C 60 W	1.1740	< 1.300 N/mm ²
C 67 W	1.1744	< 1.300 N/mm ²
C 55 W	1.1820	< 1.300 N/mm ²
Werkzeugstähle	für Kal	tarbeit
X 210 Cr 12	1.2080	< 1.200 N/mm ²
X 42 Cr 13	1.2083	< 1.300 N/mm ²
105 MnCr 4	1.2127	< 1.300 N/mm ²
X 155 CrV 12	1.2201	< 1.300 N/mm ²
100 CrMo 5	1.2303	< 1.300 N/mm ²
X 36 CrMo 17	1.2316	< 1.300 N/mm ²
100 CrMoV 5 1	1.2363	< 950 N/mm ²
X 210 CrW 12	1.2436	< 1.200 N/mm ²
X 165 CrMoV 12	1.2601	< 1.300 N/mm ²
90 MnCrV 8	1.2842	< 1.300 N/mm ²
VANADIS 4		< 1.300 N/mm ²
VANADIS 10		< 1.300 N/mm ²
CPM 10V		< 1.300 N/mm ²
Schnellarbeitsstä	ihle	
S 6-5-2 (DMo 5)	1.3343	< 950 N/mm ²
S 2-9-1 (BMo 9)	1.3346	< 1.300 N/mm ²
S 2-10-1-8	1.3247	< 1.200 N/mm ²
S 18-1-2-5	1.3255	< 1.200 N/mm ²
ASP 30		< 1.300 N/mm ²
ASP 60		< 1.300 N/mm ²
CPM REX M4		< 1.300 N/mm ²
Werkzeugstähle	für Wa	rmarbeit
65 MnCrMo 4	1.2309	< 1.300 N/mm ²
X 38 CrMoV 5 1	1.2343	< 1.300 N/mm ²
X 40 CrMoV 5 1	1.2344	< 1.200 N/mm ²
X 38 CrMoV 5 3	1.2367	< 1.300 N/mm ²
X 45 NiCrMo 4	1.2767	< 1.300 N/mm ²
ı		

HRC

Gehärtete Stähle mit Härten bis 65 HRC Hardened steels with hardness up to 65 HRC

nai ueileu steels with harulless u			
Werkstoff	DIN	Härte	
Stahl gehärtet	(bis 45 HR	C)	
X 210 CrW 12	1.2436	45 HRC	
X 165 CrMoV 12	1.2601	45 HRC	
X 45 NiCrMo 4	1.2767	45 HRC	
90 MnCrV 8	1.2842	45 HRC	
S 6-5-2 (DMo 5)	1.3343	45 HRC	
VANADIS 4		45 HRC	
VANADIS 10		45 HRC	
ASP 30		45 HRC	
ASP 60		45 HRC	
CPM REX M 4		45 HRC	
CPM 10V		45 HRC	

۲	10 05 11110		
	Werkstoff	DIN	Härte
	Stahl gehärtet	(bis 55 HR	C)
	X 210 CrW 12	1.2436	55 HRC
	X 165 CrMoV 12	1.2601	55 HRC
	X 45 NiCrMo 4	1.2767	55 HRC
	90 MnCrV 8	1.2842	55 HRC
	S 6-5-2 (DMo 5)	1.3343	55 HRC
	CPM REX M 4		55 HRC
	CPM 10V		55 HRC
	VANADIS 4		55 HRC
	VANADIS 10		55 HRC
	ASP 30		55 HRC
	ASP 60		55 HRC

Werkstoff	DIN	Härte
Stahl gehärtet	(bis 68 HR	C)
S 6-5-2 (DMo 5)	1.3343	68 HRC
VANADIS 4		68 HRC
ASP 30		68 HRC
ASP 60		68 HRC
CPM REX M 4		68 HRC
CPM 10V		68 HRC
HARDOX 500		68 HRC
X 210 CrW 12	1.2436	68 HRC
X 165 CrMoV 12	1.2601	68 HRC
X 45 NiCrMo 4	1.2767	68 HRC
90 MnCrV 8	1.2842	68 HRC

Inox

Rostfreie Stähle, ferritisch, martensitisch und austenitisch Stainless steels, ferritic, martensitic and austenitic

Werkstoff	DIN	Härte	
Rostfreier Stahl (geschwefelt)			
X 12 CrMoS 12	1.4104	< 850 N/mm²	
X 4 CrMoS 18	1.4105	< 850 N/mm²	
X 8 CrNiS 18 9	1.4305	< 850 N/mm²	
Rostfreier Stah	l, ferritis	sch	
X 6 Cr 13	1.4000	< 700 N/mm²	
X 6 CrAl 13	1.4002	< 1.100 N/mm²	
G-X 8 CrNi 13	1.4008	< 1.100 N/mm²	
X 6 Cr 17	1.4016	< 1.100 N/mm²	
G-X 22 CrNi 17	1.4059	< 1.100 N/mm²	
X 6 CrMo 17 1	1.4113	< 700 N/mm²	
X 3 CrTi 17	1.4510	< 1.100 N/mm²	
X 3 CrNb 17	1.4511	< 1.100 N/mm²	
X 6 CrTi 12	1.4512	< 700 N/mm²	
Rostfreier Stah	l, marte	nsitisch	
X 12 CrS 13	1.4005	< 1.100 N/mm²	
X 12 Cr 13	1.4006	< 1.100 N/mm²	

Werkstoff	DIN	Härte	
Rostfreier Stahl, martensitisch			
X 20 Cr 13	1.4021	< 1.100 N/mm ²	
X 15 Cr 13	1.4024	< 1.100 N/mm²	
X 30 Cr 13	1.4028	< 1.100 N/mm²	
X 46 Cr 13	1.4034	< 1.100 N/mm ²	
X 17 CrNi 16 2	1.4057	< 1.100 N/mm²	
X 90 CrMoV 18	1.4112	< 1.100 N/mm²	
X 50 CrMoV 15	1.4116	< 1.100 N/mm ²	
X 105 CrMo 17	1.4125	< 1.100 N/mm ²	
Rostfr. Stahl, fer	ritisch,	austenitisch	
X 8 CrNiMo 27 5	1.4460	< 1.100 N/mm²	
X 4 CrNiMoNb 25 7	1.4582	< 1.100 N/mm ²	
X 20 CrNiSi 25 4	1.4821	< 1.100 N/mm²	
Rostfreier Stahl,	austen	itisch	
X 12 CrNi 18 8	1.4300	< 1.100 N/mm²	
X 5 CrNi 18 10	1.4301	< 1.100 N/mm²	
X 2 CrNi 19 11	1.4306	< 1.100 N/mm²	

Werkstoff	DIN	Härte
Rostfreier Stahl,	auster	nitisch
X 5 CrNi 18 7	1.4310	< 1.100 N/mm²
G-X 10 CrNi 18 8	1.4312	< 1.100 N/mm²
G-X 6 CrNiMo 18 10	1.4408	< 1.100 N/mm²
X 2 CrNiMo 18 14	1.4433	< 1.100 N/mm²
X 2 CrNiMo 18 14 3	1.4435	< 850 N/mm²
X 5 CrMo 17 13 3	1.4436	< 850 N/mm²
X 5 CrNiMo 17 13	1.4449	< 1.100 N/mm²
X CrNiTi 18 10	1.4541	< 850 N/mm²
X 6 CrNiNb 18 10	1.4550	< 850 N/mm²
Rostfreier Stahl,	hitzeb	eständig
G-X 30CrSi 6	1.4710	< 1.100 N/mm²
X 45 CrSi 9 3	1.4718	< 1.100 N/mm²
G-X 40 CrSi 13	1.4729	< 1.100 N/mm²
X 80 CrNiSi 20	1.4747	< 1.100 N/mm²
G-X CrNiSi 18 9	1.4825	< 1.100 N/mm²

Ni/Co

Legierungen auf Nickel- oder Kobalt-Basis Nickel or cobalt based alloys

Werkstoff	DIN	Härte
Reinnickel		
NiAlBz	2.1504	< 500 N/mm²
Ni 99 Csi	2.4042	< 500 N/mm ²
Ni 99,6	2.4060	< 500 N/mm ²
Ni 99,4 Fe	2.4062	< 500 N/mm²
Ni-Legierungen	(Rm < 9	900 N/mm²)
Monel 400	2.4360	< 900 N/mm²
Monel 500	2.4374	< 900 N/mm²
Hastelloy B2	2.4617	< 900 N/mm²
Inconel 800	2.4876	< 900 N/mm²

Werkstoff		DIN	Härte
	Ni-Legierungen	(Rm <	900 N/mm ²)
	Inconel 500	2.4983	< 900 N/mm²
	Udimet 500	2.4983	< 900 N/mm²
	Ni-Legierungen	(Rm <1	.500 N/mm²)
	Nimonic 80A	2.4631	< 1.200 N/mm²
	Nimonic 90	2.4632	< 1.200 N/mm²
	Nimonic 105	2.4634	< 1.200 N/mm²
	Nimonic 901	2.4662	< 1.200 N/mm ²
	Inconel 625	2.4856	< 1.200 N/mm ²
	Inconel 718	2.4668	< 1.200 N/mm²

Werkstoff	DIN	Härte
Ni-Legierunge	n (Rm <1	500 N/mm ²)
Inconell X-750	2.4669	< 1.200 N/mm²
Nimocast 713	2.4670	< 1.200 N/mm ²
Nimocast PK24	2.4674	< 1.200 N/mm ²
Inconel 625	2.4856	< 1.200 N/mm²
Waspaloy	2.6554	< 1.200 N/mm ²
Verschleißfest	e Stähle	
HARDOX 400		< 1.200 N/mm ²
HARDOX 500		< 1.200 N/mm ²

Z

Titan- und Titanlegierungen Titanium and titanium alloys

Werkstoff	DIN	Härte
Reintitan		
Ti 99,7	3.7034.1 <	< 1.100 N/mm²
Ti 99,4	3.7055	< 700 N/mm ²
Ti 99,2	3.7064.1	< 700 N/mm²
Titan-Legieru	ngen	
TiAl 5 Sn 2	3.7114	< 900 N/mm ²

Werkstoff	DIN	Härte
Titan-Legierunge	n	
TiCu 2	3.7124	< 900 N/mm ²
TiAl 6 V 4	3.7163	< 900 N/mm ²
TiAl 6 V 6 Sn 2	3.7174	< 900 N/mm ²
TiCu 2	3.7124	< 1.100 N/mm ²
TiAl 6 Zr 5	3.7154	< 1.250 N/mm²

Werkstoff	DIN	Härte
Titan-Legierung	gen	
TiAl 5 V 4	3.7164	< 1.100 N/mm²
TiAl 6 V 4	3.7164	< 1.250 N/mm ²
TiAl 6 V 6 Sn 2	3.7174	< 1.250 N/mm ²
TiAl 4 Mo 4 Sn 2	3.7184	< 1.250 N/mm ²

GG

Gusswerkstoffe mit Lamellen- oder Kugelgrafit, Temperguss Cast iron with lammelar or nodular graphite, malleable cast iron

Werkstoff	DIN	Härte
GG mit Lamel	lengrafit (stark abrasiv)
GG-10	0.6010	< 400 N/mm²
Grauguss mit	Lamelleng	grafit
GG-15	0.6015	< 500 N/mm²
GG-20	0.6020	< 400 N/mm²
GG-25	0.6025	< 500 N/mm ²
GG-30	0.6030	< 800 N/mm ²
GG-35	0.6035	< 800 N/mm ²
GG-40	0.6040	< 1.000 N/mm ²

Werkstoff	DIN	Härte
Kugelgrafitguss,	Tempe	rguss
GGG-35.1	0.7033	< 500 N/mm ²
GGG-40	0.7040	< 700 N/mm ²
GGG-40.3	0.7043	< 700 N/mm ²
GGG-50	0.7050	< 700 N/mm²
GGG-60	0.7060	< 700 N/mm ²
GGG-70	0.7070	< 1.000 N/mm ²
GGG-80	0.7080	< 1.000 N/mm ²
GTW-35	0.8035	< 500 N/mm ²

Werkstoff	DIN	Härte
Kugelgrafitguss,	Temperg	guss
GTW-40	0.8040	< 500 N/mm ²
GTW-45	0.8045	< 500 N/mm ²
GTW-55	0.8055	< 500 N/mm ²
GTW-65	0.8065	< 500 N/mm²
GTS-35	0.8135	< 500 N/mm²
GTS-45	0.8145	< 500 N/mm²
GTS-55	0.8155	< 500 N/mm ²
GTS-65	0.8165	< 500 N/mm ²

Αl

Aluminium und Aluminiumlegierungen Aluminium and aluminium alloys

Werkstoff	DIN	Härte
Aluminium (un	legiert,nie	edriglegiert)
AI 99,5 H	3.0250	< 350 N/mm ²
E-Al H	3.0256	< 350 N/mm ²
AI 99,8 H	3.0280	< 350 N/mm ²
Al 99,9 Mg 0,5	3.3308	< 350 N/mm ²
AIMg 4.5 Mn	3.3547	< 350 N/mm ²
Aluminium-Leg	gierungen	(Si <0,5%)
AlMn1	3.0515	< 500 N/mm ²
S-AlMn	3.0516	< 500 N/mm ²
AlMn 1 Mg 0,5	3.0525	< 500 N/mm ²
AlMgSiPb	3.0615	< 500 N/mm ²
AlCuMg 2	3.1355	< 500 N/mm ²

Werkstoff	DIN	Härte
Aluminium-Leg	ierungen	(Si <0,5%)
G-AlCu 4 Ti	3.1841	< 500 N/mm²
G-AIMg 3 Si	3.3241	< 500 N/mm²
GD-AlMg9	3.3292	< 500 N/mm ²
AIMg 1	3.3315	< 500 N/mm²
AIMg 3	3.3535	< 500 N/mm²
AlZnMgCu 1,5	3.4365	< 500 N/mm ²
GD-AlSi 6 Cu 4	3.2152	< 400 N/mm²
G-AlSi 9 Mg	3.2373	< 400 N/mm²
Aluminium-Leg	ierungen	(Si <15%)
G-AlSi 10 Mg	3.2381	< 400 N/mm²
G-AlSi 10 Mg (Cu)	3.2383	< 400 N/mm²

Werkstoff	DIN	Härte
Aluminium-Legi	erungen	(Si <15%)
S-AISi 12	3.2525	< 400 N/mm ²
G-AISi 12	3.2581	< 400 N/mm ²
G-AlSi 12 (Cu)	3.2583	< 400 N/mm ²
GD-AlSi 12 (Cu)	3.2982	< 400 N/mm ²
G-MgAl 6	3.5562	< 400 N/mm²
G-MgAl 8 Zn 1	3.5812	< 400 N/mm²
G-MgAl 9 Zn 1	3.5912	< 400 N/mm²
Aluminium-Legi	erungen	(Si >15%)
G-AlSi 17 Cu 4		< 400 N/mm²
G-AlSi 21 CuNiMg		< 400 N/mm²

Cu

Kupferlegierungen, kurz- und langspanend Copper alloys, longchipping and shortchipping

Werkstoff	DIN	Härte
Kupfer (unlegi	ert, niedri	glegiert)
E-Cu 57	2.0060	< 350 N/mm ²
SE-Cu	2.0070	< 350 N/mm ²
SF-Cu	2.0090	< 350 N/mm ²
CuMn 3	2.1356	< 350 N/mm ²
CuSI 2 Mn	2.1522	< 350 N/mm²
Kupfer-Legieru	ngen (ku	rzspanend)
CuZn 40 (Ms60)	2.0360	< 400 N/mm²
CuZn 44 Pb 2	2.0410	< 700 N/mm²
CuZn 40 Al 1	2.0561	< 700 N/mm²
G-CuSn 7 ZnPb	2.1090	< 500 N/mm²
G-CuSn 6 ZnNi	2.1093	< 700 N/mm²
G-CuSn 5 ZnPb	2.1096	< 700 N/mm²
CuZn 20	2.0250	< 700 N/mm²
CuZn 30	2.0265	< 700 N/mm ²

Werkstoff	DIN	Härte
Kupfer-Legier	ungen (ku	rzspanend)
CuZn 37	2.0321	< 700 N/mm²
CuSn 6	2.1020	< 700 N/mm²
CuSn 8	2.1030	< 500 N/mm²
Kupfer-Legier	ungen (lan	gspanend)
CuSn 6 Zn 6	2.1080	< 700 N/mm²
CuBe 1,7	2.1245	< 700 N/mm²
CuBe 2	2.1247	< 700 N/mm²
CuCrZr	2.1293	< 700 N/mm²
CuSi 3 Mn	2.1525	< 700 N/mm²
Kupfer-Sonde	rleg. (bis 2	00 HB)
CuAl 5 (AlBz 5)	2.0916	< 700 N/mm²
CuBe 2 Fe 40	2.1247	< 700 N/mm²
CuSi 3 Mn	2.1525	< 700 N/mm²
AMPCO 8		< 700 N/mm ²

Werkstoff	DIN	Härte
Kupfer-Sonderle	eg. (bis	200 HB)
AMPCO 12		< 700 N/mm ²
AMPCO 15		< 700 N/mm ²
AMPCO 16		< 700 N/mm ²
Kupfer-Sonderle	g. (200	-300 HB)
CuBe 1,7 F55	2.1245	< 1.500 N/mm ²
AMPCO 18		< 1.500 N/mm ²
AMPCO 20		< 1.500 N/mm ²
CuBe 1,7 F110	2.1245	< 1.500 N/mm ²
Kupfer-Sonderle	g. (übe	r 300 HB)
CuBe 2 F125	2.1247	< 1.500 N/mm ²
AMPCO 21		< 1.500 N/mm ²
AMPCO 22		< 1.500 N/mm ²
AMPCO 25		< 1.500 N/mm ²
AMPCO 26		< 1.500 N/mm ²

Plast

Kunststoffe, thermoplastisch, duroplastisch und faserverstärkt Plastics, thermoset, thermoplast or fibre reinforced

Werkstoff	DIN	Festigkeit	Werkstoff	DIN	Festigkeit
Thermoplaste			Thermoplaste		
ABS		35 - 50 N/mm²	Polyamid 43/57/80		
ABC Copolymere		80 N/mm²	Polyamid 66		
Bayolan		70 - 75 N/mm²	Polycarbonat		5 N/mm²
Delrin			Polyethylen		
Dogalan		80 N/mm²	Polymethylmethacryla	t	70 - 76 N/mm ²
Dolin		50 - 70 N/mm²	Polyoxymethylen		
Durethan 43			Polypropylen		21 - 37 N/mm ²
Fluon		20 - 40 N/mm²	Polystrol		80 N/mm ²
Hostaflon TF		20 - 40 N/mm²	Polystyrol		
Hostaform		50 - 70 N/mm²	Polyetrafluorethylen		20 - 40 N/mm ²
Hostalen		20 - 80 N/mm²	Polyvinylchlorid		32 - 60 N/mm ²
Hostalen PP		20 - 38 N/mm²	РО М		
Hostalit		35 - 60 N/mm²	PP		21 - 37 N/mm ²
Hostyren N		40 - 65 N/mm²	PS		40 - 65 N/mm ²
Hostyren S		22 - 50 N/mm²	PTFE		20 - 40 N/mm ²
Luran		78 N/mm²	PVC-U		35 - 60 N/mm²
Lustran		80 N/mm²	Resanit		70 - 76 N/mm²
Makrolon 5			Risitex		80 N/mm ²
Novodur		35 - 56 N/mm²	Rilsan		
Novolen		21 - 38 N/mm²	SAN		78 N/mm ²
PC		5 N/mm²	Solvic		35 - 60 N/mm ²
PE-HD		20 - 30 N/mm²	Styrol Acrylnitril		78 N/mm²
Plexiglas		70 - 76 N/mm²	Styrol Buladien		22 - 50 N/mm ²
PMMA		70 - 78 N/mm²	Teflon		20 - 40 N/mm ²

Werkstoff D	IN		Festi	gkeit
Thermoplaste				
Vestolen P		2	1 - 37	N/mm²
Vostyron		4	0 - 50	N/mm²
Vinol		3	5 - 60	N/mm²
Vinoflex		3	5 - 60	N/mm²
Duroplaste und Pre	SSS	tof	fe	
Albanit			110	N/mm²
Bakelit			110	N/mm²
Ferrozell			110	N/mm²
Harnstoff-Formaldehyd			80	N/mm²
Melamin-Formaldehyd			80	N/mm²
MF			80	N/mm²
Pertinax			110	N/mm²
Phenol-Formaldehyd			80	N/mm²
Resitex				
Resopal			80	N/mm²
UP			80	N/mm²
Faserverstärkte Ku	nst	sto	ffe	
(Faseranteil bis 30°	%)			
AFK Aramidfaserverstärl	kt 8	00 -	1.000	N/mm²
	1.0	00 -	1.500	N/mm²
CFK Kohlefaserverstärkt	8	00 -	1.000	N/mm²
	1.0	00 -	1.500	N/mm²
GFK Glasfaserverstärkt	8	00 -	1.000	N/mm²
	1.0	00 -	1.500	N/mm²

Grafit

Grafite und Grafit-Komposite Graphite and graphite composites

Ner	ksi	to	fi

Grafit

Grafit-Aluminium-Komposite

Grafit-Titan-Komposite

Schaftausführungen

Shank Types

ZYL	Zylinderschaft Cylindrical Shank	DIN 1809	Zylinderschaft mit Mitnehmerlappen Cylindrical Shank with Tongue End
	Toleranz im Regelfall h7, auch h8 bis h9 Tolerance normally h7, but also h8 or h9		Toleranz h7 Tolerance h7
A DIN 1835A	Zylinderschaft DIN 1835 Form A (HSS, HSS-E Werkzeuge) Cylindrical Shank DIN 1835 Form A (HSS-E Tools)	HA DIN 6535A	Zylinderschaft DIN 6535 Form HA (VHM Werkzeuge) Cylindrical Shank DIN 6535 Form HA (Carbide Tools)
	Toleranz h6, Tolerance h6 Ø 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 25, 32		Toleranz h5 oder h6, Tolerance h5 or h6 Ø 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 25, 32
B DIN 1835B	Schaft DIN 1835 Form B, seitliche Mitnahmefläche (HSS, HSS-E Werkzeuge) Shank DIN 1835 Form B with flat, Weldon Shank (HSS-E Tools)	HB DIN 6535B	Schaft DIN 6535 Form HB, seitliche Mitnahmefläche (VHM Werkzeuge) Shank DIN 6535 Form HB with flat, Weldon Shank (Carbide Tools)
	Toleranz h6, Tolerance h6 Ø 6, 8, 10, 12, 16, 20, 25, 32		Toleranz h6, Tolerance h6 Ø 6, 8, 10, 12, 16, 20, 25, 32
E DIN 1835E	Schaft DIN 1835 Form E, geneigte Mitnahmefläche (HSS, HSS-E Werkzeuge) Shank DIN 1835 Form E with flat, Weldon Shank (HSS-E Tools)	HE DIN 6535E	Schaft DIN 6535 Form HE, geneigte Mitnahmefläche (VHM Werkzeuge) Shank DIN 6535 Form HE with flat, Weldon Shank (Carbide Tools)
	Toleranz h6, Tolerance h6 Ø 6, 8, 10, 12, 16, 20, 25, 32		Toleranz h6, Tolerance h6 Ø 6, 8, 10, 12, 16, 20, 25, 32
МК	Morsekegelschaft DIN 228 Form B mit Austreiberlappen Morse Taper Shank DIN 228 Form B with Ejector Drift		
	MK 0 - MK 6 MTS 0 - MTS 6		

Normen für metrische Gewindebohrer

Norms for Metric Taps

DIN 371	Metrisches ISO-Regelgewinde mit verstärktem Schaft (bis M10) Metric ISO Thread with reinforced shank (up to M10)
DIN 376	Metrisches ISO-Regelgewinde mit abgesetztem Schaft (Überlaufschaft) Metric ISO Thread with reduced shank
DIN 374	Metrisches ISO-Feingewinde mit abgesetztem Schaft (Überlaufschaft) Metric ISO Thread with reduced shank

Internationale Maßeinheiten

International Units

Die wichtigsten	Einheiten			
Größe	Einheit	Zeichen	Beziehungen zur	Einheit
Länge	Meter	m	1 m	= 100 cm
	Zentimeter	cm	1 cm	= 10 mm
	Millimeter	mm	1 mm	= 1.000 µm
Fläche	Ar	а	1 a	= 10 ² m ²
Winkel	Grad	0	1°	= 17,45 mrad
	Minute	11	1°/60	= 0,291 mrad
	Sekunde	ı	1'/60	= 4,85 rad
Masse	Kilogramm	kg	1 kg	= 1.000 g
	Tonne	t	1 t	= 1 Mg = 1.000 kg
Volumen	Liter	I	1	$= 1 \text{ dm}^3 = 0,001 \text{ m}^3$
Zeit	Sekunde	S	1 s	= 1.000 ms
	Minute	min	1 min	= 60 s
	Stunde	h	1 h	= 3.600 s
Geschwindigkeit		km/h	1 km/h	= 1/3,6 m/s
			1 m/s	= 3,6 km/h
Stromstärke	Ampere	А	1 A	= 1.000 mA
Druck	Pascal	Pa	1 Pa	= 0,01 mBar
	Bar	bar	1 bar	= 10 ⁵ Pa
Temperatur	Kelvin	K		
Kraft	Newton	N		
Drehmoment	Newtonmeter	Nm		
Leistung	Watt	W		
Energie / Arbei	t (Joule)	1 Nm = 1	Ws = 1 J (in Bez	ug auf die absolute Größe)
	Newtonmeter	Nm		Mechanische Energieform
	Wattsekunde	Ws		Elektrische Energieform
	Joule	J		Kalorische Energieform

Die wichtigsten Vorsatzzeichen und ihre Anwendung							
Mega	М	= 1.000.000	= 106	1 MW	= 1.000.000 W		
Kilo	k	= 1.000	= 103	1 kW	= 1.000 W		
Hekto	h	= 100	= 102	1 hl	= 100		
Deka	da	= 10		1 daN	= 10 N		
Dezi	d	= 0,1	= 10-1	1 dm	= 0,1 m		
Zenti	С	= 0,01	= 10-2	1 cm	= 0,01 m		
Milli	m	= 0,001	= 10-3	1 mm	= 0,001 m		
Mikro	μ	= 0,000001	= 10-6	1 μm	= 0,000001 m		

Die wichtigsten Umrechnungen zwischen den bisherigen und den neuen Einheiten							
Neue Einheiten zur bis	herigen Einheit:	Bisherige E	Bisherige Einheit zur neuen Einheit:				
1 N	= 0,102 kp	1 kp	= 9,81 N				
1 Nm	= 0,102 kpm (= 1 Joule)	1 kpm	= 9,81 Nm				
1 W	= 0,102 kpm/s (1 J/s)	1 kpm/s	= 9,81 W				
1 kW	= 1,36 PS	1 PS	= 0,736 kW				
1 kW	= 860 kcal/h	1 kcal/h	= 1,16.10-3 kW = 0,00116 kW				
1 J	= 0,102 kp/m ²	1 kpm	= 9,81 J				
1 J	= 0,239 cal	1 cal	= 4,19 J				
1 Pa	=0,102kp/m ²	1 kp/m²	= 9,81 Pa = 9,81 N/m ²				
K	= °C + 273,15						
In der Praxis rechnet man mit folgenden Werten: 1 kp ~ 10 N - 1 N ~ 0,1 kp							

Umrechnungstabelle Zoll in Millimeter

Conversion Table Imperial to Metric

Nach DIN 4890; 1 Zoll = 25,400 mm (s. DIN 4890 - gerundet)

Zoll	0	1	2	3	4	5	6	7	8	9	10	11	12
Zollbrüche	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	25,400	50,800	76,200	101,600	127,00	152,40	177,80	203,20	228,60	254,00	279,40	304,80
1/16	1,588	26,988	52,388	77,788	103,188	128,59	153,99	179,39	204,79	230,19	255,59	280,99	306,39
1/8	3,175	28,575	53,975	79,375	104,775	130,18	155,58	180,98	206,38	231,78	257,18	282,58	307,98
3/16	4,763	30,163	55,563	80,963	106,363	131,76	157,16	182,56	207,96	233,36	258,76	284,16	309,56
1/4	6,350	31,750	57,150	82,550	107,950	133,35	158,75	184,15	209,55	234,95	260,35	285,75	311,15
5/16	7,938	33,338	58,738	84,138	109,538	134,94	160,34	185,74	211,14	236,54	261,94	287,34	312,74
3/8	9,525	34,925	60,325	85,725	111,125	136,53	161,93	187,32	212,73	238,13	263,53	288,93	314,33
7/16	11,113	36,513	61,913	87,313	112,713	138,11	163,51	188,91	214,31	239,71	265,11	290,51	315,91
1/2	12,700	38,100	63,500	88,900	114,300	139,70	165,10	190,50	215,90	241,30	266,70	292,10	317,50
9/16	14,288	39,688	65,088	90,488	115,888	141,29	166,69	192,09	217,49	242,89	268,29	293,69	319,09
5/8	15,875	41,275	66,675	92,075	117,475	142,88	168,28	193,68	219,08	244,48	269,88	295,28	320,68
11/16	17,463	42,863	68,263	93,663	119,063	144,46	169,86	195,26	220,66	246,06	271,46	296,86	322,26
3/4	19,050	44,450	69,850	95,250	120,650	146,05	171,45	196,85	222,25	247,65	273,05	298,45	323,85
13/16	20,638	46,038	71,438	96,838	122,238	147,64	173,04	198,44	223,84	249,24	274,64	300,04	325,44
7/8	22,225	47,625	73,025	98,425	123,825	149,23	174,63	200,03	225,43	250,83	276,23	301,63	327,03
15/16	23,813	49,213	74,613	100,013	125,413	150,81	176,21	201,61	227,01	252,41	277,81	303,21	328,61

Umrechnungstabelle Millimeter in Zoll

Conversion Table Metric to Imperial

Dezimal-Teilung - Umrechnungswert: 1 Zoll = 25,4 mm

mm in Zoll	0	1	2	3	4	5	6	7	8	9
mm	U	1	2	3	4	5	0	,	0	9
0	0	0.03937"	0.07874"	0.11811"	0.15748"	0.19685"	0.23622"	0.27559"	0.31496"	0.35433"
10	0.39370"	0.43307"	0.47244"	0.51181"	0.55118"	0.59055"	0.62992"	0.66929"	0.70866"	0.74809"
20	0.78740"	0.82677"	0.86614"	0.90551"	0.94488"	0.98425"	1.02362"	1.06299"	1.10236"	1.14173"
30	1.18110"	1.22047"	1.25984"	1.29921"	1.33858"	1.37795"	1.41732"	1.45669"	1.49606"	1.53543"
40	1.57480"	1.61417"	1.65354"	1.69291"	1.73228"	1.77165"	1.81102"	1.85039"	1.88976"	1.92913"
50	1.96851"	2.00787"	2.04724"	2.08661"	2.12598"	2.16535"	2.20472"	2.24409"	2.28346"	2.32283"
60	2.36221"	2.40157"	2.44095"	2.48031"	2.51968"	2.55905"	2.59842"	2.63779"	2.67716"	2.71653"
70	2.75591"	2.79527"	2.83465"	2.87401"	2.91338"	2.95275"	2.99212"	3.03149"	3.07086"	3.11024"
80	3.14961"	3.18897"	3.22835"	3.26772"	3.30709"	3.34646"	3.38583"	3.42520"	3.46457"	3.50394"
90	3.54331"	3.58268"	3.62205"	3.66142"	3.70079"	3.74016"	3.77953"	3.81890"	3.85827"	3.89764"

Vergleichstabelle der Härte und Zugfestigkeit* Comparative Table of Hardness and Resistance

Vickershärte	Brinellhärte	Rockwellhärte		Zugfestigkeit		
HV 30	HB 30	HRB	HRC	N/mm²		
80	80	36	-	270		
85	85	42	-	290		
90	90	47	-	310		
95	95	52	-	320		
100	100	56	-	340		
105	105	60	-	360		
110	110	63	-	380		
115	115	66	-	390		
120	120	69	-	410		
125	125	72	-	420		
130	130	74	_	440		
135	135	76	-	460		
140	140	78	-	470		
145	145	80	_	490		
150	150	82	_	500		
155	155	84	-	520		
160	160	85	-	540		
165	165	87		550		
170	170	88	_	570		
175	175	90	-	590		
				 		
180	180	91	-	600		
185	185	92	-	620		
190	190	93	-	640		
195	195	94	-	660		
200	200	95	-	670		
205	205	96	-	680		
210	210	97	-	710		
215	215	98	-	720		
220	220	98	-	730		
225	225	99	-	750		
230	230	-	19	760		
235	235	-	20	780		
240	240		21	800		
245	245		22	820		
250	250	-	23	830		
255	255	-	24	850		
260	260	-	25	870		
265	265	-	25	880		
270	270	-	26	900		
275	275	-	27	920		
280	280	-	28	940		
285	285	-	28	950		
290	290	-	29	970		
295	295	-	30	990		
300	300	-	30	1010		
310	310	-	32	1040		
320	320	-	33	1080		
330	330	-	34	1110		
340	340	-	35	1140		
* Allo mittale vare	hiedener Härtenri			lenen Werkstoffen ei		

Vickershärte	Brinellhärte	Rockwe	ellhärte	Zugfestigkeit	
HV 30	HB 30	HRB	HRC	N/mm²	
350	350	-	36	1170	
360	359	-	37	1200	
370	368	1	38	1230	
380	376	-	39	1260	
390	385	-	40	1290	
400	392	-	41	1320	
410	400	ı	42	1350	
420	408	ı	42	1380	
430	415	ı	43	1410	
440	423	ı	44	1430	
450	430	-	45	1460	
460	-	ı	46	-	
470	-	-	46	-	
480	-	-	47	-	
490	-	-	48	-	
500	-	-	48	-	
510	-	-	49	-	
520	-	-	50	-	
530	-	-	50	-	
540	-	-	51	-	
550	-	-	52	-	
560	-	-	52	-	
570	-	-	53	-	
580	-	-	53	-	
590	-	-	54	-	
600	-	-	54	-	
610	-	-	55	-	
620	-	-	56	-	
630	-	-	56	-	
640	-	-	57	-	
650	-	-	57	-	
660	-	-	58	-	
670	-	-	58	-	
680	-	-	59	-	
690	-	-	59	-	
700	-	-	60	-	
720	-	-	60	-	
740	-	-	61	-	
760	-	-	62	-	
780	-	-	63	-	
800	-	-	64	-	
820	-	-	64	-	
840	-	-	65	-	
860	-	-	66	-	
880	-	-	66	-	
900	-	-	67	-	
920	-	-	68	-	
940	-	-	68	-	
		L.			

^{*} Alle mittels verschiedener Härteprüfverfahren an verschiedenen Werkstoffen ermittelten Härtewerte sind nur annähernd vergleichbar.

Piktogramme

Pictograms

VUM USS HSS HSS BM HM-	Schneidstoffe
VHM HSS E E05 E08 PM Platte	Cutting Materials
blank poliert X Cut Cut Cut Diamant Dia HC Steam	Oberflächen Surface
Zylinderschaft Cylindrical shank Zylinderschaft, Toleranz h6 Cylindrical shank, tolerance h6 Zylinderschaft, Toleranz h6 Cylindrical shank, tolerance h6 Zentrierbohrer mit Fläche Center drills with flat	Schäfte Shanks
MK Morsekegelschaft Morse taper shank Mit Spannfläche, Toleranz h6 With flatted shank, tolerance h6 With flatted shank, tolerance h6 Mit Spannfläche, Toleranz h6 With flatted shank, tolerance h6 Freistellung nach Schneide gestellt Back clearance after cutting edge	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bohrtiefe in Relation zum Ø Drilling depth in relation to tool diameter
VA W N H 55° 118° 60° 118° 120° ~60°	Typen und Winkel Types and angles
Form B Form C Form E Form W Form W	Form des Werkzeugs Indication of the tools' forms
z:1 z:2 z: 2-3 z:3 -6	Anzahl der Schneiden Number of flutes
2% 5% 6,25% 8%	Steigung / Konizität Conicity
Rechts drall Links drall	Richtung Direction
Mehrschneider Multiflute Mehrschneider Multiflute Bohrerspitze Drill Point Nutfräserspitze Slot Mill Point	Spitzengeometrie Point geometrie
Fase Schutzfase Protection chamfer Radius Vollradius Full radius Eck Radius Corner radius	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toleranzen Tolerances
DIN 6539 DIN 7212 ISO WN	Normen Standards
Stirnfräsen Front Cut Nutfräsen Slotting Zuschneiden Trimming	Anwendung Application
Grundlöcher Ground holes Durchgangslöcher Through holes	
Linksschneidend Left hand cutting Manueller Einsatz Manual use Nicht für manuellen Einsatz Not for manual use	
HPC High Performance Cutting Hohes Spanvolumen High performance chipping HSC High Speed Cutting Hochgeschwindigkeitsbearbeitung High speed machining Trochoidal Dynamic Cutting Trochoide Hochgeschwindigkeitsbearbeitung Trochoidal high speed machining	
M MF G NPT UNC Innen gewinde Gewinde Außen + Außen	Gewindeart Thread type
UNI versal Inox Alu Cu CFK GFK Honey comb	Werkstoffeignung Material suitability
Bohr nuten fräser Radius fräser Schaft fräser Schaft fräser Schrupp fräser Schrupp fräser Schrupp fräser Schrupp fräser	Fräser Typen Type of cutter
Duo Mag Combi Face Face	Werkzeugnamen Tool names
Gravier Tool Entgrat Tool Tool	Werkzeugbereiche Tool region